NEET-UG - 2013 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 05 ${ }^{\text {th }}$ MAY, 2013)

136. The value of Planck's constant is $6.63 \times 10 \quad-34 \mathrm{Js}$. The speed of light is $3 \times 10 \quad{ }^{17} \mathrm{~nm} \mathrm{~s}^{-1}$. Which value is closest to the wavelength in nanometer of a quantum of light with frequency of $6 \times 10 \quad{ }^{15} \mathrm{~s}^{-1}$?
(1) 75
(2) 10
(3) 25
(4) 50

Ans. (4)
Sol. $\lambda=\frac{C}{v}=\frac{3 \times 10^{17} \mathrm{nms}^{-1}}{6 \times 10^{15} \mathrm{~s}^{-1}}=50 \mathrm{~nm}$
137. The radical,
 has :-
(1) $6 p$-orbitals and 7 unpaired electrons
(2) $6 p$-orbitals and 6 unpaired electrons
(3) $7 p$-orbitals and 6 unpaired electrons
(4) 7 p-orbitals and 7 unpaired electrons

Ans. (2)

Sol.

per Huckel's rule it has 6π electreons present in p-orbital of carbon atoms involved information of benzene ring (Aromatic nature).

138. Which of the following is electron-deficient?
(1) PH_{3}
(2) $\left(\mathrm{CH}_{3}\right)_{2}$
(3) $\left(\mathrm{SiH}_{3}\right)_{2}$
(4) $\left(\mathrm{BH}_{3}\right)_{2}$

Ans. (4)
Sol.

$\left(\frac{3 \text { centre }-2 e \text { bond }}{\text { electron deficient }}\right)$
139. Which of the following statements about the interstitial compounds is incorrect ?
(1) They have higher melting points than the pure metal
(2) They retain metallic conductivity
(3) They are chemically reactive
(4) They are much harder than the pure metal

Ans. (3)
140. How many grams of concentrted mitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}{ }_{3}$?
(1) 54.0 conc. HNO_{3}
(2) 45.0 conc. HNO_{3}
(3) 90.0 conc. HNO_{3}
(4) 70.0 conc. HNO_{3}

Ans. (2)
Sol. $\quad \mathrm{M}=\frac{\mathrm{W} \times 1000}{\mathrm{M}_{\mathrm{w}} \times \mathrm{V}_{\text {solution }}(\mathrm{mL})}$
$2=\frac{W \times 1000}{63 \times 250}$
$\mathrm{W}=31.5 \mathrm{~g}$
$70 \% \mathrm{HNO}_{3}$ means $70 \mathrm{~g} \mathrm{HNO}_{3}$ is present in 100 g solution.
$\therefore \quad 31.5 \mathrm{~g} \mathrm{HNO}{ }_{3}$ will be present in $\frac{100}{70} \times 31.5$

$$
=45 \mathrm{~g} \text { of solution }
$$

141. Which of the following lanthanoid ions is diamagnetic?
(Atoms, $\mathrm{Ce}=58, \mathrm{Sm}=62, \mathrm{Yb}=70$)
(1) Yb^{2+}
(2) Ce^{2+}
(3) Sm^{2+}
(4) Eu^{2+}

Ans. (1)
Sol. dimagnetic - no w.e - present
$\mathrm{Yb}^{+2}=70[\mathrm{Xe}] 6 \mathrm{~s}^{\circ} 4 \mathrm{f}{ }^{14} 5 \mathrm{~d}^{\circ}$ U.e- $=$ zero.
142 Which one of the following molecules contains no π bond ?
(1) NO_{2}
(2) CO_{2}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) SO_{2}

Ans. (3)

Sol. Stability order is

and conjugated diene and it has involved more acidic $-\mathrm{H}\left[-\mathrm{CH}_{2}\right]$

Involvement of
less acidic - H in tautomerism
146. Nylon is an example of :-
(1) Polythene
(2) Polyester
(3) Polysaccharide
(4) Polymide

Ans. (4)
Sol. Nylon has polyamide linkage. It is formed by condensation reaction of amines and carboxylic acid groups.
147. XeF_{2} is isostructural with :-
(1) BaCl_{2}
(2) TeF_{2}
(3) ICl_{2}^{-}
(4) SbCl_{3}
144. In the reaction

(1) $\mathrm{H}^{+} \mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{HgSO}_{4} \mathrm{H}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$

Ans. (4)

Sol.

145. The order of stability of the following tautomeric compounds is :-

(III)
(1) II $>$ III $>$ I
(2) I $>$ II $>$ III
(3) III $>$ II $>$ I
(4) II $>$ I $>$ III

Ans. (3)

Sol.

t-Butyl isobutyl

sec-butyl
n-Butyl
151. The number of carbon atoms per unit cell of diamond unit cell is :-
(1) 1
(2) 4
(3) 8
(4) 6

Ans. (3)
Sol. In the diamond cubic unit cell, there are eight corner atoms, six face centered atoms and four more atoms inside the structure.
\therefore Number of atoms present in a diamond cubic unit cell

$$
=1+3+4=8 \text { atoms }
$$

152 An excess of AgNO_{3} is added to 100 mL of a 0.01
M solution of dichlorotetraaquachromium(III) chloride. The number of moles of AgCl precipitated would be :-
(1) 0.01
(2) 0.001
(3) 0.002
(4) 0.003

Ans. (2)
153. What is the maximumnumbers of electrons that can be associated with the following set of quantum numbers?
$\mathrm{n}=3, \quad l=1$ and,$=-1$
(1) 2
(2) 10
(3) 6
(4) 4

Ans. (1)
Sol. $\mathrm{n}=3, \quad \ell=1$ and $\mathrm{m}=-1$ represent a 3p-orbital so maximum 2 electrons can be accomodate in it.
154. Which of these is not a monomer for a high molecular mass silicone polymer?
(1) PbSiCl_{3}
(2) MeSiCl_{3}
(3) $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$
(4) $\mathrm{Me}_{3} \mathrm{SiCl}$

Ans. (4)
Sol. Silicones are organo-silicon polymer containing

Since $\mathrm{Me}{ }_{3} \mathrm{SiCl}$ contain only one Cl therefore it can't form high molecular mass silicon polymer
It act a chain terminating organo silane
155. A reaction having equal energies of activation for forward and reverse reactions has :-
(1) $\Delta \mathrm{H}=\Delta \mathrm{G}=\Delta \mathrm{S}=0$
(2) $\Delta \mathrm{S}=0$
(4) $\Delta \mathrm{G}=0$
(4) $\Delta \mathrm{H}=0$

Ans. (4)
Sol. $\quad \Delta \mathrm{H}=(\mathrm{Ea})_{\mathrm{f}}-(\mathrm{Ea})_{\mathrm{b}}$
Given : $(\mathrm{Ea})_{f}=(\mathrm{Ea})_{\mathrm{b}}$
$\therefore \Delta H=0$
156. At $25^{\circ} \mathrm{C}$ molar conductance of 0.1 molar aqueous solution of ammonium hydroxide is $9.54 \mathrm{ohm}{ }^{-1} \mathrm{~cm}^{2}$ mol^{-1} and at infinite dilution its molar conductance is $238 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The degree of ionisation of ammonium hydroxide at the same concentration and temperature is :-
(1) 40.800%
(2) 2.080%
(3) 20.800%
(4) 4.008%

Ans. (4)
Sol. $\quad \% \alpha=\frac{\lambda^{c}}{\lambda^{\infty}} \times 100=\frac{9.54}{238} \times 100=4.008 \%$
157. Structure of the compound whose IUPAC name is 3-Ethyl-2-hydroxy-4-methylhex-3-en-5-ynoic acid is :-
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

3-Ethyl-2-hydroxy-4-methylhex-3-ex-5-ynonic acid
158. Among thefollowing ethers, which one will produce methyl alcohol on treatement with hot concentrated HI ?
(1)

(2) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
(3)

(4)

Ans. (4)
Sol. C-Obond cleavage of ether depends on mechanism involved in reaction which can be SN 1 or SN^{2}. If any one groupcan form stable carbocation like tertiary butyl groupthen reaction follow's SN 1 mechanism

159. Antiseptics and disinfectants either kill or prevent growth of microganisms. Identify which of the following statements is not true
(1) Disinfectants harm the living tissues
(2) A 0.2% solution of phenol is an antiseptic while 1% solution acts as a disinfectant
(3) Chlorine and Iodine are used as strong disinfectants
(4) Dilute solutions of Boric acid and Hydrogen Peroxide are strong antiseptics

Ans. (4)
160. A magnetic moment of 1.73 BM will be shown by one among the following :-
(1) $\left[\mathrm{CoCl}_{6}\right]^{4-}$
(2) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(3) $\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right]^{2-}\right.$
(4) TiCl_{4}

Ans. (2)

Sol. Magnetic moment 1.73 BM
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M
$\mathrm{n}=$ no. of unpaired e -
$\mu=1.73$
$1.73=\sqrt{\mathrm{n}(\mathrm{n}+2)}$ B.M
$\mathrm{n}=1$
${ }^{*}\left[\mathrm{CoCl}_{6}\right]^{4-} \quad \rightarrow \quad \mathrm{Co}^{+2} ; \mathrm{d}^{7}$
Cl^{-}(weak field ligand) $\mathrm{t}_{2} \mathrm{~S}^{5} \mathrm{eg}^{2}$ unpaired $e^{-}=3$

* $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \mathrm{Cu}+2-\mathrm{d}^{9}$
NH_{3} Strong field ligand, hybridisation dsp 2
* one e^{-}of 3 d jumps into 4 p subshell.
unpaired $e^{-}=1$
* $\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right]^{2-} \rightarrow \mathrm{Ni}^{+2}-\mathrm{d}^{8}\right.$ unpaired $e^{-}=0$
CN^{-}- Strong field ligand dsp ${ }^{2}$
* $\mathrm{TiCl}_{4} \rightarrow \mathrm{Ti}^{+4} \mathrm{~d}^{\circ}$ unpaired $\mathrm{e}^{-}=$zero.

161. KMnO_{4} can be prepared fromK ${ }_{2} \mathrm{MnO}_{4}$ as per the reaction :-
$3 \mathrm{MnO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+4 \mathrm{OH}^{-}$ The reaction can go to compition by removing OH ions by addings :-
(1) SO_{2}
(2) HCl
(3) KOH
(4) CO_{2}

Ans. (4)
162 Reaction by which Benzaldehyde cannot be prepared :-
(1)

(2)

(3)
 4
(4)

AlCl_{3}
Ans. (1)

Sol. In presence of $\mathrm{Zn}-\mathrm{Hg}$ and conc. HCl reduction is useful specially for aldehyde and ketone but carboxylic group remains uneffected

163. Which of the following does not give oxygen on heating ?
(1) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(2) KClO_{3}
(3) $\mathrm{Zn}\left(\mathrm{ClO}_{3}\right)_{2}$
(4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Ans. (1)
Sol. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$ do not produces O_{2}.
164. A metal has a fcc lattice. The edge length of the unit cell is 404 pm . The density of the metal is 2.72 g cm^{-3}. The molar mass of the metal is :-
(1) $20 \mathrm{~g} \mathrm{~mol}^{-1}$
(2) $40 \mathrm{~g} \mathrm{~mol}^{-1}$
(3) $30 \mathrm{~g} \mathrm{~mol}^{-1}$
(4) $28 \mathrm{~g} \mathrm{~mol}^{-1}$

Ans. (4)
Sol. $\quad \rho=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}} \quad$ for $\mathrm{FCC}, \mathrm{Z}=4$

$$
\begin{aligned}
a & =404 \mathrm{pm}=404 \times 10 \quad{ }^{-10} \mathrm{~cm} . \\
2.72 & =\frac{4 \times \mathrm{M}}{6.02 \times 10^{23} * 404 \quad 10 \mathrm{f}^{-10}} \\
M & =27 \mathrm{gmol}^{-1}
\end{aligned}
$$

165. Dipole induced dipoloe interactions are present in which of the following pairs :-
(1) SiF_{4} and He atoms
(2) $\mathrm{H}_{2} \mathrm{O}$ and al cohol
(3) Cl_{2} and CCl_{4}
(4) HCl and He atoms

Ans. (4)
Sol. Dipole - induced dipole occurs between polar \& Non-polar molecule

HCl	He
Polar	Non-polar
$\mu \neq 0$	$\mu=0$

166. Roasting of sulphides gives the gas X as a by product. This is colourless gas with choking smel of burnt sulphur and causes great damage to respiratory organs as a result of acid rain. It aqueous solution is acidic, acts as reducing agent and its acid has never been isolated. The gas X is :-
(1) SO_{3}
(2) $\mathrm{H}_{2} \mathrm{~S}$
(3) SO_{2}
(4) CO_{2}

Ans. (3)
167. Some meta-directing substituents in aromatic substitution are given. Which one is most deactivating?
(1) $-\mathrm{NO}_{2}$
(2) $-\mathrm{C} \equiv \mathrm{N}$
(3) $-\mathrm{SO}_{3} \mathrm{H}$
(4) -COOH

Ans. (1)
Sol. Deactivating power :

$$
-\mathrm{NO}_{2}>-\mathrm{C} \equiv \mathrm{~N}>-\mathrm{SO}_{3} \mathrm{H}>\mathrm{COOH}
$$

168. Nitrobenzene on reaction with conc. $\mathrm{HNO} \quad{ }_{3} \mathrm{H}_{2} \mathrm{SO}_{4}$ at $80-100^{\circ} \mathrm{C}$ forms which one of the following products?
(1) 1, 2, 4-Trinitrobenzene
(2) 1, 2-Dinitrobenzene
(3) 1, 3-Dinitrobenzene
(4) 1, 4-Dinitrobenzene

Ans. (3)
Sol.

Mixture of [Conc HNO_{3} conc $\mathrm{H}_{2} \mathrm{SO}_{4}$] gives $\stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2}$ whichacts as electrophile and in nitrobenzene
$-\mathrm{NO}_{2}$ group is m-directing group so $\quad \stackrel{\oplus}{\mathrm{N}} \mathrm{O}_{2}$ attacks at m-position.
169. A hydrogen gas electrode is made by dipping platinum wire in a solution of HCl of $\mathrm{pH}=10$ and by passing hydrogen gas around the platinum wire at one atm pressure. The oxidation potential of electrode would be?
(1) 1.81 V
(2) 0.059 V
(3) 0.59 V
(4) 0.118 V

Ans. (3)

Sol. $\quad \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}+\mathrm{e}^{-}$
$\mathrm{E}_{\text {O.P. }}=\mathrm{E}_{\text {O.P. }}^{\circ}-\frac{0.059}{\mathrm{n}} \log \frac{\left[\mathrm{H}^{+}\right]}{\left(\mathrm{P}_{\mathrm{H}_{2}}\right)^{1 / 2}}$
$\mathrm{E}_{\text {O.P. }}=0-\frac{0.059}{1} \log \frac{10^{-10}}{(1)^{1 / 2}}$

$$
\left(\mathrm{pH}=10,\left[\mathrm{H}^{+}\right]=10^{-10} \mathrm{M}\right)
$$

$\mathrm{E}_{\mathrm{OP} .}=0.59 \mathrm{~V}$
170. Which of the following is a polar molecule ?
(1) XeF_{4}
(2) BF_{3}
(3) SF_{4}
(4) SiF_{4}

Ans. (3)
Sol. Unsymmetrical distribution of e - cloud leads to the formation of polar molecule

171. A button cell used in watches function as following
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightleftharpoons 2 \mathrm{Ag}(\mathrm{s})+$
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
If half cell potentials are
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) ; \mathrm{E}^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ;$
$\mathrm{E}^{\circ}=0.34 \mathrm{~V}$
The cell potential will be :-
(1) 1.34 V
(2) 1.10 V
(3) 0.42 V
(4) 0.84 V

Ans. (2)
Sol. $\mathrm{Zn}^{2+}(\mathrm{aq})+2 e^{-} \longrightarrow \mathrm{Zn}(\mathrm{s}) ; \mathrm{E}^{\circ}=-0.76 \mathrm{~V}$
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) ;$
$\mathrm{E}^{\circ}=0.34 \mathrm{~V}$
$\mathrm{Zn}(\mathrm{s})+\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\ell) \longrightarrow 2 \mathrm{Ag}(\mathrm{s})+\mathrm{Zn}^{+2}(\mathrm{aq})$
$+2 \mathrm{OH}^{-}(\mathrm{aq}) ; \mathrm{E}_{\mathrm{cell}}=$?
$\mathrm{E}_{\text {cell }}^{\circ}=\left(\mathrm{E}_{\text {R.P. }}^{\circ}\right)_{\text {cathode }}-\left(\mathrm{E}_{\text {R.P. }}^{\circ}\right)_{\text {anode }}$
$\mathrm{E}_{\text {cell }}^{\circ}=0.34-(-0.76)=1.10 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}=1.10 \mathrm{~V}$
172. Which of these is leastlikely to actas aLewis base?
(1) PF_{3}
(2) CO
(3) F^{-}
(4) BF_{3}

Ans. (4)

173. Which of the following compounds will not undergo Friedal-Craft's reaction easily :-
(1) Toluene
(2) Cumene
(3) Xylene
(4) Nitrobenzene

Ans. (4)
Sol. Friedal Craft reaction fails when strong deactivating group is attached with benzene ring.
174. Which is the monomer of Neoprene in the following?
(1) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(3)

(4)

Ans. (4)
Sol.

175. $6.02 \times 10{ }^{20}$ molecules of ureaare present in 100 mL of its solution. The concentration of solution is :-
(1) 0.1 M
(2) 0.02 M
(3) 0.01 M
(4) 0.001 M

Ans. (3)

Sol. Number of moles $=\frac{\text { number of molecules }}{\mathrm{N}_{\mathrm{A}}}$

$$
=\frac{6.02 \times 10^{20}}{6.02 \times 10^{23}}=10^{-3} \mathrm{~mol}
$$

Molar conc. $=\frac{\mathrm{n} \times 1000}{\mathrm{~V}_{\text {solution }}(\mathrm{mL})}=\frac{10^{-3} \times 1000}{100}$
Molar conc. $=0.01 \mathrm{M}$
176. Maximum deviation from ideal gas is expected from:
(1) $\mathrm{NH}_{3}(\mathrm{~g})$
(2) $\mathrm{H}_{2}(\mathrm{~g})$
(3) $\mathrm{N}_{2}(\mathrm{~g})$
(4) $\mathrm{CH}_{4}(\mathrm{~g})$

Ans. (1)
Sol. NH_{3} will show maximum deviation from ideal gas due to dipole-dipole attraction.
177. Which of the following is paramagnetic?
(1) NO^{+}
(2) CO
(3) O_{2}^{-}
(4) CN^{-}

Ans. (3)
Sol. $\mathrm{O}_{2}^{-} \rightarrow 15 e^{-}$contains one unpaired e^{-}in ABMO.
$\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z^{2}} \pi 2 p_{x^{2}}=\pi 2 p_{y^{2}} \pi^{*}$
178. Identify the correct order of solubility in aqueous medium :
(1) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{ZnS}>\mathrm{CuS}$
(2) $\mathrm{CuS}>\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}$
(3) $\mathrm{ZnS}>\mathrm{Na}_{2} \mathrm{~S}>\mathrm{CuS}$
(4) $\mathrm{Na}_{2} \mathrm{~S}<\mathrm{CuS}>\mathrm{ZnS}$

Ans. (1)
179. What is the activationenergy for a reaction it its rate doubles when the temperature is raised from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$? $\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol} \quad{ }^{-1} \mathrm{~K}^{-1}\right)$
(1) $15.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $342 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $269 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $34.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (4)

Sol. $\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$

$$
\begin{aligned}
& \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=2 \\
& \Rightarrow \log 2=\frac{\mathrm{Ea}}{2.303 \times 8.314 \quad 10^{-3}}\left(\frac{1}{293}-\frac{1}{308}\right) \\
& \Rightarrow \mathrm{Ea}=34.7 \mathrm{KJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

180. Which is the strongest acid in the following ?
(1) $\mathrm{H}_{2} \mathrm{SO}_{3} \quad$ (2) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(3) HClO_{3}
(4) HClO_{4}

Ans. (4)

