CAREER INSTITUTE

## AIPMT - 2014 TEST PAPER WITH SOLUTIONS (HELD ON SUNDAY 04 ${ }^{\text {th }}$ MAY, 2014)

46. What is the maximum number of orbitals that can be identified with the following quantum numbers? $\mathrm{n}=3, \quad \ell=1, \mathrm{~m}_{\ell}=0$
(1) 1
(2) 2
(3) 3
(4) 4

Ans. (1)
Sol. $\mathrm{n}=3, \quad \ell=1, \mathrm{~m}=0$
Orbital is $3 p_{z}$.
47. Cal culate the energy in joul e corresponding to light of wavelength 45 nm :
(Planck's constant $\mathrm{h}=6.63 \times 10 \quad-34 \mathrm{Js}$; speed of light $\mathrm{c}=3 \times 10 \quad 8 \mathrm{~ms}^{-1}$ )
(1) $6.67 \times 10 \quad 15$
(2) $6.67 \times 10 \quad 11$
(3) $4.42 \times 10^{-15}$
(4) $4.42 \times 10-18$

Ans. (4)
Sol. $E=\frac{h c}{\lambda}=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{45 \times 10^{-9}}$
$\mathrm{E}=4.42 \times 10-18 \mathrm{~J}$
48. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temeprature $27^{\circ} \mathrm{C}$ in identical conditions. The ratio of the volumes of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$ : methane would be :
(1) $8: 16: 1$
(2) $16: 8: 1$
(3) $16: 1: 2$
(4) $8: 1: 2$

Ans. (3)
Sol. According to Avogadro's hypothesis volume $\propto$ moles

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{H}_{2}}=\frac{\mathrm{w}}{2} \\
& \mathrm{n}_{\mathrm{O}_{2}}=\frac{\mathrm{w}}{32} \\
& \mathrm{n}_{\mathrm{CH}_{4}}=\frac{\mathrm{w}}{16}
\end{aligned}
$$

So, ratio is $\frac{\mathrm{w}}{2}: \frac{\mathrm{w}}{32}: \frac{\mathrm{w}}{16}$

$$
=16: 1: 2
$$

49. If a is the length of the side of a cube, the distance between the body centered atom and one corner atom in the cube will be :
(1) $\frac{2}{\sqrt{3}} \mathrm{a}$
(2) $\frac{4}{\sqrt{3}} \mathrm{a}$
(3) $\frac{\sqrt{3}}{4} a$
(4) $\frac{\sqrt{3}}{2} \mathrm{a}$

Ans. (4)
Sol. The distance between the body centred atom and one corner atom is $\frac{\sqrt{3} \mathrm{a}}{2}$
50. Which property of colloids is not dependent on the charge on colloidal particles ?
(1) Coagulation
(2) Electrophoresis
(3) Electro - osmosis
(4) Tynadall effect

Ans. (4)
Sol. Tyndall effect is optical property.
51. Which of the following salts will give highest pH in water?
(1) KCl
(2) NaCl
(3) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(4) $\mathrm{CuSO}_{4}$

Ans. (3)
Sol. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will give highest pH in water because it is salt of strong base and weak acid
52. Of the following 0.10 m aqueous solutions, which one will exhibit the largest freezing point depression?
(1) KCl
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(3) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(4) $\mathrm{K}_{2} \mathrm{SO}_{4}$

Ans. (3)
Sol. Depression in freezing point $\propto$ vant Hoff's factor
(i) for $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \rightarrow \mathrm{i}=5$
53. When 22.4 litres of $\mathrm{H}_{2}(\mathrm{~g})$ is mixed with 11.2 litres of $\mathrm{Cl}_{2}(\mathrm{~g})$, each atS.T.P., the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to :-
(1) 1 mol of $\mathrm{HCl}(\mathrm{g})$
(2) 2 mol of $\mathrm{HCl}(\mathrm{g})$
(3) 0.5 mol of $\mathrm{HCl}(\mathrm{g})$
(4) 1.5 mol of $\mathrm{HCl}(\mathrm{g})$

Ans. (1)
Sol. $\quad n_{H_{2}}=\frac{V(L)}{22.4 \mathrm{~L}}=\frac{22.4}{22.4}=1$

$$
\mathrm{n}_{\mathrm{Cl}_{2}}=\frac{11.2}{22.4}=0.5 \text { mole }
$$

|  | $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$ | $2 \mathrm{HCl}_{(\mathrm{g})}$ |
| :--- | :---: | :---: |
| initially - | 1 mole 0.5 mole | 0 |
| after reaction | $(1-0.5)$ | $0.5 \times 2$ |
|  |  |  |
|  | $=0.5$ mole 0 | $=1$ mole |

54. When $0.1 \mathrm{~mol} \mathrm{MnO}_{4}^{2-}$ is oxidised the quantity of electricity required to completely oxidise $\mathrm{MnO}_{4}^{2-}$
to $\mathrm{MnO}_{4}^{-}$is :-
(1) 96500 C
(2) $2 \times 96500 \mathrm{C}$
(3) 9650 C
(4) 96.50 C

## Ans. (3)

Sol. $\stackrel{+6}{\mathrm{MnO}_{4}^{-2}} \quad \rightarrow \quad \stackrel{+7}{\mathrm{MnO}_{4}^{-}}+e^{-}$
0.1 mole
0.1 mole
charge required $=0.1 \mathrm{~F}=0.1 \times 96500$

$$
=9650 \mathrm{C}
$$

55. Using the Gibbs energy change, $\Delta \mathrm{G}^{\circ}=+63.3 \mathrm{~kJ}$, for the following raction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \rightleftharpoons 2 \mathrm{Ag}+(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(\mathrm{aq})$
the $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is :( $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ )
(1) $3.2 \times 10^{-26}$
(2) $8.0 \times 10^{-12}$
(3) $2.9 \times 10^{-3}$
(4) $7.9 \times 10-2$

Ans. (2)
Sol. $\quad \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log \mathrm{K}{ }_{\mathrm{sp}}$
$63.3 \times 1000=-2.303 \times 8.314 \times 298 \log \mathrm{Ksp}$
$\log \mathrm{Ksp}=-11.09$
Ksp $=10-11.09=8 \times 10-12$
56. The weight of silver (at wt. $=108$ ) displaced by a quantity of electricity which displaces 5600 mL of $\mathrm{O}_{2}$ at STP will be :-
(1) 5.4 g
(2) 10.8 g
(3) 54.9 g
(4) 108.0 g

Ans. (4)
Sol. According to faraday's 2 nd law

$$
\begin{aligned}
\frac{\mathrm{w}_{\mathrm{Ag}}}{\mathrm{E}_{\mathrm{Ag}}} & =\frac{\mathrm{w}_{\mathrm{O}_{2}}}{\mathrm{E}_{\mathrm{O}_{2}}} \\
\frac{\mathrm{w}_{\mathrm{Ag}}}{108} & =\frac{\left(\frac{5600}{22400}\right) \times 32}{8} \\
\therefore \quad \mathrm{w}_{\mathrm{Ag}} & =108 \mathrm{~g}
\end{aligned}
$$

57. Which of the following statements is correct for the spontaneous adsorption of a gas ?
(1) $\Delta \mathrm{S}$ is negative and, therefore, $\Delta \mathrm{H}$ should be highly positive
(2) $\Delta \mathrm{S}$ is negative and therefore, $\Delta \mathrm{H}$ should be highly negative
(3) $\Delta \mathrm{S}$ is positive and, therefore, $\Delta \mathrm{H}$ should be negative
(4) $\Delta \mathrm{S}$ is positive and, therefore, $\Delta \mathrm{H}$ should also be highly positive

Ans. (2)
Sol. During adsorption entropy decreases, so $\Delta \mathrm{S}<0$.

$$
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}
$$

For spontaneous adsorption $\quad \Delta \mathrm{G}<0$ so $\Delta$ Hshould be highly negative.
58. For the reaction :
$\mathrm{X}_{2} \mathrm{O}_{4}(\ell) \longrightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$
$\Delta \mathrm{U}=2.1 \mathrm{k} \mathrm{cal}, \quad \Delta \mathrm{S}=20 \mathrm{cal} \mathrm{K}^{-1}$ at 300 K
Hence $\Delta \mathrm{G}$ is :-
(1) 2.7 k cal
(2) -2.7 k cal
(3) 9.3 k cal
(4) -9.3 k cal

Ans. (4)
Sol. According to Le-Chatelier's Principle
$\rightarrow$ In exothermic reactions low temperature favours the forward reaction
$\rightarrow$ On increasing pressure equilibrium shifts towards less number of moles.
59. For a given exothermic reaction, $\mathrm{K} \quad \mathrm{p}$ and $\mathrm{K}_{\mathrm{P}}^{\prime}$ are the equilibrium constants at temperatures $\mathrm{T} \quad 1$ and $\mathrm{T}_{2}$, respectively. Assuming that heat of reaction is constant in temperature range between $\mathrm{T} \quad 1$ and $\mathrm{T}_{2}$, it is readily observed that :-
(1) $K_{p}>K_{P}^{\prime}$
(2) $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{P}}^{\prime}$
(3) $K_{p}=K_{P}^{\prime}$
(4) $\mathrm{K}_{\mathrm{p}}=\frac{1}{\mathrm{~K}_{\mathrm{P}}^{\prime}}$

Ans. (2)
Sol. $\quad \mathrm{X}_{2} \mathrm{O}_{4}(\ell) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g}) ; \Delta \mathrm{n}_{\mathrm{g}}=2-0=2$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$

$$
=2.1+2 \times \frac{2}{1000} \times 300
$$

$\Delta \mathrm{H}=3.3 \mathrm{kcal}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} . \Delta \mathrm{S}$

$$
=3.3-\quad 300 \times \frac{20}{1000} ; \quad \Delta G=-2.7 \mathrm{Kcal}
$$

60. Which of the following orders of ionic radii is correctly represented?
(1) $\mathrm{H}>\mathrm{H}^{+}>\mathrm{H}$
(2) $\mathrm{Na}^{+}>\mathrm{F}^{-}>\mathrm{O}^{2-}$
(3) $\mathrm{F}^{-}>\mathrm{O}^{2-}>\mathrm{Na}^{+}$
(4) $\mathrm{Al}^{3+}>\mathrm{Mg}^{2+}>\mathrm{N}^{3-}$

Ans. (1)
Sol. In exothermic reactions on increasing temperature value of $\mathrm{K}_{\mathrm{p}}$ decreases.

So, $K_{p}>K_{p}{ }^{\prime}$

61. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} \mathrm{O} \quad{ }_{2}$ in a closed vessel. Which reactant is left in excess and how much?
(At. wt. $\mathrm{Mg}=24 ; \mathrm{O}=16$ )
(1) $\mathrm{Mg}, 0.16 \mathrm{~g}$
(2) $\mathrm{O}_{2}, 0.16 \mathrm{~g}$
(3) $\mathrm{Mg}, 0.44 \mathrm{~g}$
(4) $\mathrm{O}_{2}, 0.28 \mathrm{~g}$

## Ans. (B)

62. The pair of compounds that can exist together is:-
(1) $\mathrm{Mg}, 0.16 \mathrm{~g}$
(2) $\mathrm{O}_{2}, 0.16 \mathrm{~g}$
(3) $\mathrm{Mg}, 0.44 \mathrm{~g}$
(4) $\mathrm{O}_{2}, 0.28 \mathrm{~g}$

Ans. (1)
Sol. $\quad \mathrm{n}_{\mathrm{Mg}}=\frac{1}{24}$ mole, $\quad \mathrm{n}_{\mathrm{O}_{2}}=\frac{0.56}{32}$ moles

$$
\mathrm{Mg}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{MgO}(\mathrm{~s})
$$

Initially $\quad \frac{1}{24}$ mole $\quad \frac{0.56}{32}$ mole
0.0416 mole 0.0175 mole 0
after $(0.0416-2 \times 0.0175) \quad 0 \quad 2 \times 0.0175$ mole reaction 0.0066 mole
$\therefore \quad$ mass of $\mathrm{Mg}=0.0066 \times 24 \mathrm{~g}=0.16 \mathrm{~g}$
63. The pair of compounds that can exist together is:-
(1) $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
(2) $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
(3) $\mathrm{FeCl}_{2}, \mathrm{SnCl}_{2}$
(4) $\mathrm{FeCl}_{3}, \mathrm{Kl}$

Ans. (3)
Sol. Both are reducing agent
64. $\mathrm{Be}^{2+}$ is isoelectronic with which of the following ions?
(1) $\mathrm{H}^{+}$
(2) $\mathrm{Li}^{+}$
(3) $\mathrm{Na}^{+}$
(4) $\mathrm{Mg}^{2+}$

Ans. (2)
Sol. $\mathrm{Li}^{+}, \mathrm{Be}^{+2} \& \mathrm{Li}^{+}$both have 2 electron.
65. Which of the following molecules has the maximum dipolement?
(1) $\mathrm{CO}_{2}$
(2) $\mathrm{CH}_{4}$
(3) $\mathrm{NH}_{3}$
(4) $\mathrm{NF}_{3}$

Ans. (3)

Sol.

$\mu=1.4 \mathrm{D} \quad 0.23 \mathrm{D}$
66. Which one of the following species has plane triangular shape?
(1) $\mathrm{N}_{3}^{-}$
(2) $\mathrm{NO}_{3}^{-}$
(3) $\mathrm{NO}_{2}^{-}$
(4) $\mathrm{CO}_{2}$

## Ans. (2)

Sol. $\quad \mathrm{NO}_{3}^{-}$has $\mathrm{sp}^{2}$ hybridisation i.e. why has planar shape.
67. Acidity of diprotic acids in aqueous solutions increases in the order :-
(1) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(2) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
(3) $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
(4) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}$

Ans. (1)
Sol. On moving down the group bond length increases so liberation tendency of H will be more.

68 (a) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{O}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Role of hydrogen peroxide in the above reactions is respectively -
(1) Oxidizing in (a) and reducing in (b)
(2) Reducing in (a) and oxidizing in (b)
(3) Reducing in (a) and (b)
(4) Oxidizing in (a) and (b)

Ans. (3)
69. Artificial sweetner which is stable under cold conditions only is :-
(1) Saccharine
(2) Sucralose
(3) Aspartame
(4) Alitame

Ans. (3)
70. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$ to $\mathrm{CrO}_{5}$ which has two $(-\mathrm{O}-\mathrm{O})$ bonds. Oxidation state of Cr in $\mathrm{CrO}_{5}$ is :-
(1) +5
(2) +3
(3) +6
(4) -10

Ans. (3)

Sol.

71. The reaction of aqueous KMnO 4 with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic conditions gives :-
(1) $\mathrm{Mn}^{4+}$ and $\mathrm{O}_{2}$
(2) $\mathrm{Mn}^{2+}$ and $\mathrm{O}_{2}$
(3) $\mathrm{Mn}^{2+}$ and $\mathrm{O}_{3}$
(4) $\mathrm{Mn}^{4+}$ and $\mathrm{MnO}_{2}$

Ans. (2)
Sol. $\quad \mathrm{KMnO}_{4}$ is a strong oxidising agent \& wll oxidise $\mathrm{H}_{2} \mathrm{O}_{2}$ to $\mathrm{O}_{2}$.
72. Among the following complexes the one which shows Zero crystal field stabilizationenergy (CFSE):-
(1) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Ans. (2)
Sol. Due to d ${ }^{5}$ configuration and $\mathrm{H}_{2} \mathrm{O}$ is a weak ligand.
73. Magnetic moment 2.83 BM is given by which of the following ions?
(At. nos. $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Ni}=28$ ):-
(1) $\mathrm{Ti}^{3+}$
(2) $\mathrm{Ni}^{2+}$
(3) $\mathrm{Cr}^{3+}$
(4) $\mathrm{Mn}^{2+}$

Ans. (2)
Sol. $\mathrm{Ni}^{+2}$ has two unpaired electron.
74. Which of the following complexes is :-
(1) mer- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(2) cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
(3) cis- $\mathrm{K}_{2}\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]$
(4) $\mathrm{Na}_{2} \mathrm{CoCl}_{4}$

## Ans. (2)

Sol. Cis-platin is used as an anticancer unit.
75. Reason of lanthanoid contraction is :-
(1) Negligible screening effect of ' $f$ ' orbitals
(2) Increasing nuclear charge
(3) Decreasing nuclear charge
(4) Decreasing screening effect

Ans. (1)
Sol. Due to poor shielding of f -orbitals nucleus will exert a strong attraction. Cauces lanthanoid contraction.
76. In the following reaction, the product ( A )

(1)

(2)

(3)

(4)


Ans. (4)
Sol. This is an example of electrophilic substritituion reaction [coupling reaction]

$\mathrm{H}^{\oplus}$

p-Aninoazobenzene
(yellow dye)
$+\mathrm{Cl}^{\ominus}+\mathrm{HQ}$
77. Which of the following will be most stable diazonium salt $\mathrm{RN}_{2}^{+} \mathrm{X}^{-}$?
(1) $\mathrm{CH}_{3} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{~N}_{2}^{+} \mathrm{X}^{-}$

Ans. (2)
Sol. Primary aliphatic amines form highly unstable alkyldiazonium salts. Primary aromatic amines form arene diazonium sal ts which are stable for a short time in solution at low temperature (273-278K). The stability of arenediazonium can be explained on the basis of resonance.

78. $\quad \mathrm{D}(+)$ glucose reacts with hydroxylamine and yields an oxime. The structure of the oxime would be :
(1)

(2)

(3)

(4)


Ans. (4)
Sol. Glucose reacts with hydroxyl amine to form an oxime.

79. Which of the following hormones is produced under the condition of stress which stimulates glycogenolysis in the liver of human beings?
(1) Thyroxin
(2) Insulin
(3) Adrenaline
(4) Estradiol

Ans. (3)
Sol. Adrenaline commonly known as fight or flight hormone, it is produced by the adrenal glands after receving a message from the brain that a stressful situation has presented itself.
80. Which one of the following is an example of a thermosetting polymer?
(1)

(2)

(3)

(4)


Ans. (4)
Sol. Thermosetting polymers are cross linked or heavily branched molecules, which on heating undergo extensive cross linking in moulds and again become in fusible. Most common examples are bakelite.
81. Which of the following organic compounds polymerizes to form the polyester Dacron?
(1) Propylene and para HO - ( $\left.\mathrm{C}_{6}{ }_{6} \mathrm{H}_{4}\right)$ - OH
(2) Benzoic acid an ethanol
(3) Terephthalic acid and ethylene glycol
(4) Benzoic acid and para $\mathrm{HO}-\left(\begin{array}{ll}\mathrm{C} & { }_{6} \mathrm{H}_{4}\end{array}\right)-\mathrm{OH}$

Ans. (3)
Sol. Dacron or terylene is the best known example of polyesters. It is manufactured by heating a mixture of ethylene glycol and terephthalic acid at 420 to 460 K in the presence of zinc acetate-antimaony trioxide catalyst.
$\mathrm{nHO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}+$
Ethylene glycol [Ethane-1,2-diol]


Terephthalic acid [Benzene-1,4-di carboxylic acid]

82. Which of the following is not a common component of Photochemical Smog?
(1) Ozone
(2) Acrolein
(3) Peroxyacetyl nitrate
(4) Chlorofluorocarbons

## Ans. (4)

Sol. The common components of photochemical smog are ozone, nitric oxide, ocrolein, for malde nyde and peroxyacehyl nitrate (PAN).
Hence (FC is not common component of photochemical smog.
83. In the Kjeldahl's method for estimation of nitrogen present in a soil sample, ammonia evolved from 0.75 g of sample neutralized 10 mL of $1 \mathrm{MH} \quad{ }_{2} \mathrm{SO}_{4}$.

The percentage of nitrogen in the soil is :
(1) 37.33
(2) 45.33
(3) 35.33
(4) 43.33

Ans. (1)
Sol. $\quad \because \mathrm{M} \times \mathrm{V}(\mathrm{ml})=\mathrm{m} \mathrm{mol}$
$10 \mathrm{mmol} \mathrm{H}{ }_{2} \mathrm{SO}_{4}=20 \mathrm{mmol}$ of NH
$\left[\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{3} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\right]$
$1 \mathrm{~mol} \mathrm{NH}_{3}$ contains 14 g nitrogen
$20 \times 10^{-3} \mathrm{~mol} \mathrm{NH}_{3}$ contains $14 \times 20 \times 10$
nitrogen
0.75 g of sample contains
$\%$ Nitrogen $=\frac{14 \times 20 \times 10^{-3}}{0.75} \times 100=37.33 \%$
84. What products are formed when the following compounds is treated with $\mathrm{Br}{ }_{2}$ in the presence of $\mathrm{FeBr}_{3}$ ?

(1)
 and


(3)
 and

(4)
 and


Ans. (1,2)

Sol.


(major)
(minor)

In the above compound 1,3-Dimethylbenzene, sites for the attacking electrophile are

attack of electrophile on sites (b) \& (c) results in same compound as product.
Although tendency of electrophile to attack on site (a) is very less due to high steric hinderance so respective product is favoured with very very less amount.
85. Which of the following compounds will undergo racemisation when solution of KOH hydrolyses?
(i)

(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(iii)

(iv)

(1) (i) and (ii)
(2) (ii) and (iv)
(3) (iii) and (iv)
(4) (i) and (iv)

Ans. (B)

Sol. Only compound (iv)
 formation of racemic product due to chirality.

CAREER INSTITUTE
eat to meman IKOTA (rAUASTHAN.
86. Among the following sets of reactants which one produces anisole?
(1) $\mathrm{CH}_{3} \mathrm{CHO} ; \mathrm{RMgX}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} ; \mathrm{NaOH} ; \mathrm{CH}_{3} \mathrm{I}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$; neutral FeCl 3
(4) $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3} ; \mathrm{CH}_{3} \mathrm{COCl} ; \mathrm{AlCl}_{3}$

Ans. (2)

Sol.

87. Which of the following will not be soluble in sodium hydrogen carbonate?
(1) 2, 4, 6-trinitrophenol
(2) Benzoic acid
(3) o-Nitrophenol
(4) Benzenesulphonic acid

Ans. (3)

Sol.

while 2.4.6-Trinitro phenot, benzoic acid and benzene sulphonic acid are sobuble in $\mathrm{NaHO}{ }_{3}$.

## OR

Acid $+\mathrm{NaHCO}_{3} \rightarrow$ salt $+\mathrm{H}_{2} \mathrm{Co}_{3}$
Reaction is possible in forward direction if acid is more acidic then $\mathrm{H}_{2} \mathrm{Co}_{3}$.
O-nitrophenol is less acidic than $\mathrm{H}{ }_{2} \mathrm{Co}_{3}$, hence does not soluble in sodium hydrogen carbonate.
88. Which one is most reactive towards Nucleophilic addition reaction?
(1)

(2)

(3)

(4)


Ans. (4)
Sol. Reactivity of carbonyl compounds towards NAR depends on steric and electronic effects. NAR reactivity :

89. Identify Z in the sequence of reactions:

(1) $\mathrm{CH}_{3}-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
(2) $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}{ }_{2} \mathrm{CH}_{3}$
(3) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{O}-\mathrm{CH}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

Ans. (1)
Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { (Peroxide effect) }]{\mathrm{HBr} \mathrm{Q}_{2}}$

(z)
90. Which of the following organic compounds has same hybridization as its combustion product $\left(\mathrm{CO}_{2}\right)$ ?
(1) Ethane
(2) Ethyne
(3) Ethene
(4) Ethanol

Ans. (2)
Sol. $\quad \mathrm{C}_{2} \mathrm{H}_{2}+\frac{5}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{HQ}$
Both $\mathrm{HC} \equiv \mathrm{CH} \& \mathrm{CO}_{2}$ has same hybridisation of carbon atom. (sp).

